Roman bondage in graphs

نویسندگان

  • Nader Jafari Rad
  • Lutz Volkmann
چکیده

A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) =

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roman bondage numbers of some graphs

A Roman dominating function on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value f(G) = ∑ u∈V f(u). The Roman domination number of G is the minimum weight of a Roman dominating function on G. The Roman bondage number of a nonempty ...

متن کامل

On the Roman bondage Number of a Graph

A Roman dominating function on a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 has at least one neighbor u ∈ V with f(u) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number, denoted by γR(G). The Roman bondage number...

متن کامل

The bondage numbers and efficient dominations of vertex-transitive graphs

The bondage number of a graph G is the minimum number of edges whose removal results in a graph with larger domination number.A dominating setD is called an efficient dominating set ofG if |N−[v]∩D|=1 for every vertex v ∈ V (G). In this paper we establish a tight lower bound for the bondage number of a vertex-transitive graph. We also obtain upper bounds for regular graphs by investigating the ...

متن کامل

On the bondage number of planar and directed graphs

The bondage number b(G) of a nonempty graph G is defined to be the cardinality of the smallest set E of edges of G such that the graph G − E has domination number greater than that of G. In this paper we present a simplified proof that b(G) ≤ min{8,∆(G) + 2} for all planar graphs G, give examples of planar graphs with bondage number 6, and bound the bondage number of directed graphs.

متن کامل

On the complexity of some bondage problems in graphs

The paired bondage number (total restrained bondage number, independent bondage number, k-rainbow bondage number) of a graph G, is the minimum number of edges whose removal from G results in a graph with larger paired domination number (respectively, total restrained domination number, independent domination number, k-rainbow domination number). In this paper we show that the decision problems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2011